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Abstract
Deep neural networks (DNNs) are highly effective for a wide range
of tasks but are often computationally expensive and vulnerable to
adversarial attacks. This paper explores the intersection of model
compression and adversarial robustness. In particular, we investi-
gate how the locality and structure of pruning and weight-sharing
affect model accuracy, size, and robustness. Our analysis reveals
that compressedmodels exhibit lower adversarial robustness, which
we attribute to jagged decision boundaries. To address this, we pro-
pose a retraining pipeline that integrates adversarial training with
maximum margin regularization to smooth decision boundaries
and enhance robustness lost during compression. Experiments on
VGG16 with the ILSVRC 2012 data set demonstrate that our method
doubles the robust accuracy towards FGSM compared to baseline,
while reducing the approximate model size by up to 90% through
weight-sharing. These results highlight the potential for achieving
lightweight yet robust models suitable for deployment in resource-
constrained and safety-critical environments.
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1 Introduction
The growing availability of computational resources has fueled the
development of larger and more powerful image classifiers, which
exhibit impressive performance on independent and identically
distributed (IID) datasets [5, 16]. However, despite their success,
the substantial memory and computational requirements of these
models remain significant bottlenecks to their adoption in resource-
constrained environments [14]. Furthermore, their susceptibility
to adversarial attacks raises concerns about their deployment in
safety-critical applications, such as healthcare and autonomous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESE 5390 ’24, December 5, 2024, Philadelphia, PA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

systems. Addressing these challenges requires methods that balance
efficiency, accuracy, and robustness [19].

1.1 Pruning
Pruning is a widely studied technique for compression deep neural
networks (DNNs) by removing a certain percentage, known as a
prune rate, of redundant or non-essential parameters [6, 11, 20].
Formally, for a model ℎ, pruning procedure A and prune rate 𝑟 , we
generate ℎpruned = A(ℎ, 𝑟 ). We additionally define set L𝑝𝑟𝑢𝑛𝑒 (ℎ)
as the set of all layers in ℎ that can apply pruning as well as𝑊 (ℎ)
and𝑊 (𝑙), the set of all weights in the model or layer, respectively.
We abuse notation and the size of a model as |ℎ | and the amount
of weights as |𝑊 (ℎ) |. For some loss function ℓ , and dataset D =

{(𝑥𝑖 , 𝑦𝑖 ) | 𝑖 ∈ [𝑛]} we measure the performance of A on ℎ by
analyzing the relative performance

ℓrel =
ℓ (𝑦,ℎpruned (𝑥))

ℓ (𝑦,ℎ(𝑥) (1)

Naturally, this yields a pareto-esque tradeoff between ℓrel and |ℎpruned |,
though, this gap is typically recoverable via retraining. Such pro-
cedures A can be categorized into structured and unstructured
methods. Structured methods target specific parts of the neural
architecture, while the unstructured methods remove individual
weights. As pruning has been extensively explored, there exist
many A which achieve both ℓrel ≈ 1 and small |ℎpruned |. In this
work, we’ll explore:

(1) Global Unstructured Pruning
(2) Layer Unstructured Pruning
(3) Layer Structured Pruning

1.2 Quantization
Quantiziation is a model compression technique that reduces the
precision of a model’s parameters, typically moving from 32-bit
floating point representations to lower-bit formats [17]. This re-
duction significantly decreased the memory footprint, and subse-
quently computations demands of DNNs. Formally, for a model ℎ
with weights𝑊 , quantization can be represented

𝑊quantized = Q(𝑊 ) (2)

for somemapQ. In this paper, we consider theQ induced by weight-
sharing.

1.3 Adversarial Attacks
Adversarial attacks introduce small, carefully chosen perturbations
𝛿 to the input 𝑥 ∈ R𝑑 , causing DNNs to misclassify the perturbed
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examples while appearing unchanged to human observers [7]. For-
mally, they seek to solve the following optimization problem

𝛿∗ = arg max
𝛿∈Δ𝜖

ℓ (ℎ(𝑥 + 𝛿), 𝑦) (3)

Where Δ𝜖 = {𝛿 ∈ R𝑑 | ∥𝛿 ∥𝑝 ≤ 𝜖} is the set of allowable pertur-
bations under a specified 𝑝-norm constraint. In the classification
setting, the effectiveness of an adversarial attack is therefore mea-
sures by the attack success rate (ASR):

ASR =
1
𝑛

𝑛∑︁
𝑖=1

1{ℎ(𝑥𝑖 + 𝛿∗𝑖 ) ≠ 𝑦𝑖 } (4)

It follows that an adversarially robust model seeks to minimize ASR
or maximize:

Robust Accuracy = 1 − ASR

=
1
𝑛

𝑛∑︁
𝑖=1

1{ℎ(𝑥𝑖 + 𝛿∗𝑖 ) = 𝑦𝑖 } (5)

Given the scope of this project, and the limited time and resources,
we’ll focus on the Fast Signed Gradient Method (FGSM) attack
which chooses 𝛿∗ in accordance with the gradient ∇ℓ (𝑥), exploit-
ing vulnerabilities in a model’s decision boundaries, highlighting a
fundamental trade-off between accuracy on clean data and robust-
ness to adversarial examples [7].

Typical defense mechanisms, such as adversarial training, aim
to strengthen decision boundaries against these perturbations [13].
However, most successful adversarially-aware training heuristics
rely on adversarial training from scratch, and seldom begin from a
pretrained model (as they’ve already learned biases) [22]. To this
end, prior literature is rich with approaches that perform well on
low-resolution, low-class datasets like MNIST and CIFAR-10, and
fail to deliver the same robustness guarantees on ImageNet [2]. As
such, achieving high accuracy, model compression, and adversarial
robustness on ImageNet, is particularly challenging ??

Despite the empirical success ofmodel compression, it’s interplay
adversarial robustness remains an unexplored area, motivating our
investigation into leveraging the structural changes induced by
pruning and quantization to improve robustness. Our contributions
are threefold:

(1) Comprehensive Evaluation ofCompressionAlgorithms:
We implement four different pruning algorithms along with
weight-sharing for model compression and evaluate their ef-
fects of compression on accuracy and adversarial robustness

(2) Mechanistic Analysis of Decision Boundaries: We ana-
lyze the differences in smoothness decision boundaries be-
tween models and their compressed counterparts. Our key
insight is that compressed models exhibit highly jagged, non-
smooth decision boundaries

(3) Compression with Adversarial Robust Retraining: We
leverage compressed model structure to devise a retrain-
ing algorithm that increases adversarial robustness through
adversarial retraining and smoothing decision boundaries

By systematically evaluating the relationships between quantiza-
tion, weight-sharing, and adversarial robustness, we aim to provide

practical insights and algorithms for deploying robust compressed
models in real-world scenarios.

2 Methodology
We’ll briefly discuss and analyze the compression methods, adver-
sarial attack, and robustness techniques we implement.

2.1 Pruning Methods
2.1.1 Global Unstructured Pruning. This method targets the low-
est percentile of the model’s weights in magnitude – where prun-
ing is feasible [6]. We’ll denote this procedure as A𝐺𝑙𝑜𝑏𝑎𝑙 , such
that for ℎpruned = A𝐺𝑙𝑜𝑏𝑎𝑙 (ℎ, 𝑟 ), the pruned weight set satisfies
|ℎpruned | = (1 − 𝑟 ) |ℎ |.

Algorithm 1 Global Pruning A𝐺𝑙𝑜𝑏𝑎𝑙

Require: 𝑟 ∈ (0, 1)
Require: L𝑝𝑟𝑢𝑛𝑒 (ℎ) ≠ ∅
𝑊 ′ =𝑊 (L𝑝𝑟𝑢𝑛𝑒 (ℎ))
𝑊𝑠𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑜𝑟𝑡 (𝑊 ′)
for 𝑖 = 0; 𝑖 < 𝑟 × |𝑊𝑠𝑜𝑟𝑡𝑒𝑑 |; 𝑖 = 𝑖 + 1 do

𝑊𝑠𝑜𝑟𝑡𝑒𝑑,𝑖 = 0
end for
return ℎ

Observe that Algorithm 1 only removes small weights, imposing
no constraints on the location of these weights. While Algorithm 1
enjoys substantial compression with minimal performance degra-
dation, for larger values of 𝑟 , layers with many small weights retain
significantly fewer parameters, leading to an information bottle-
neck

2.1.2 Layer-wise Unstructured Pruning. In contrast, this method
targets the lowest percentile of weights within each prunable model
layer. We’ll denote this as A𝐿𝑎𝑦𝑒𝑟 with ℎpruned = A𝐿𝑎𝑦𝑒𝑟 (ℎ, 𝑟 ),
where the size of the 𝑖 − 𝑡ℎ layer satisfies |ℎ (𝑖 )pruned | ≈ (1 − 𝑟 ) |ℎ (𝑖 ) |

Algorithm 2 Layered Unstructured Pruning A𝐿𝑎𝑦𝑒𝑟

Require: 𝑟 ∈ (0, 1)
Require: L𝑝𝑟𝑢𝑛𝑒 (ℎ) ≠ ∅

for 𝑙 ∈ L𝑝𝑟𝑢𝑛𝑒 (ℎ) do
𝑊𝑠𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑜𝑟𝑡 (𝑊 (𝑙))
for 𝑖 ∈ [0, 𝑟 × |𝑊𝑠𝑜𝑟𝑡𝑒𝑑 |) do

𝑊𝑠𝑜𝑟𝑡𝑒𝑑,𝑖 = 0
end for

end for
return ℎ

Obseve that ensures an even distribution of pruned weights
across each layer. However, larger weights may be pruned by con-
straining pruning at the layer level, cascading into lower accuracy
post-pruning.
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2.1.3 Layer-wise Structured Pruning. This method prunes struc-
tural components of the architecture [20]. We focus on output
channel pruning, denoted as A𝐶ℎ𝑎𝑛𝑛𝑒𝑙 , which removes entire di-
mensions from the model, facilitating potential model layer restruc-
turing. To formalize, let 𝐺 (𝑙) be all channels in the layer 𝑙 , where,
for the channel 𝑔 ∈ 𝐺 (𝑙), |𝑔| is the sum of weight magnitudes.

Algorithm 3 Layered Structured Pruning A𝐶ℎ𝑎𝑛𝑛𝑒𝑙

Require: 𝑟 ∈ (0, 1)
Require: L𝑝𝑟𝑢𝑛𝑒 (ℎ) ≠ ∅

for 𝑙 ∈ L𝑝𝑟𝑢𝑛𝑒 (ℎ) do
𝐺𝑠𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑜𝑟𝑡 (𝐺 (𝑙))
for 𝑖 ∈ [0, 𝑟 × |𝐺𝑠𝑜𝑟𝑡𝑒𝑑 |) do

𝐺𝑠𝑜𝑟𝑡𝑒𝑑,𝑖 = 0
end for

end for
return ℎ

Note the additional constraint: because the system considers
aggregate magnitudes across the channels, Algorithm 3 still prunes
large weights (outliers in their channel).

2.1.4 Model Hardening. Structured pruning only sets weights to 0,
but keeps the model structure. Model hardening grafts these non-
zero parameters into a reduced, more compact duplicate model.
We’ll denote this restructuring method asH(ℎ).

Algorithm 4 HardeningH(ℎ)
Require: Lprune (ℎ) ≠ ∅
Require: ℎ𝑝𝑟𝑢𝑛𝑒 = A𝐶ℎ𝑎𝑛𝑛𝑒𝑙 (ℎ)
ℎℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 = 𝑐𝑜𝑝𝑦

for 𝑙𝑖𝑛Lprune (ℎ𝑝𝑟𝑢𝑛𝑒 ) do
ℎtemp = Achannel (ℎ)
ℎ = retrain(ℎtemp)

end for
return harden(ℎ)

When measuring the performance of a structured pruning al-
gorithm, we use this method to obtain both pruned model size in
Megabytes and runtime acceleration.

2.1.5 Iterative Pruning. Rather than structurally pruning the target
rate 𝑟 in a single step, this method prunes in increments of 𝑟𝑖𝑛𝑐 ,
until the target rate is achieved. At each pruning step, we retrained
the model, allowing it to adapt to the new network structure and
reinforce the most critical connections before the next pruning step
[10].

Generally, we would harden the model after pruning step to
ensure that the pruned weights are not reinstated in training. Our
modified training algorithm masks over pruned nodes and keeps
their gradients set to 0. In this way, pruned nodes are not affected
by training, and the hardening step is reserved for the end to save
runtime.

Algorithm 5 Iterative Pruning A𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒

Require: 𝑟 ∈ (0, 1)
Require: Lprune (ℎ) ≠ ∅

for 𝑖 = 𝑟inc; 𝑖 < 𝑟 ; 𝑖 = 𝑖 + 𝑟inc do
ℎtemp = Achannel (ℎ)
ℎ = retrain(ℎtemp)

end for
return harden(ℎ)

Using Algorithm 5 requires careful design of retrain(), espe-
cially for small 𝑟inc as using the full training dataset may result in
unreasonable runtime.

2.2 Weight-Sharing
Instead of directly quantizing weights, weight sharing groups non-
zero weights into 2𝑛 linearly spaced values, 𝑙bins using K-means
clustering [10]. Each weight is mapped to it’s nearest bin, and the
resulting quantized weights are stored in a compressed coordinate
(COO) format, which includes the matrix indices and corresponding
bin-referenced values.

Algorithm 6 Weight-Sharing Q
Require: 𝑛 < 𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒
Require: Lprune (ℎ) ≠ ∅

for 𝑙 ∈ Lprune (ℎ) do
(𝐶,𝑊 ) = 𝑇𝑜_𝐶𝑂𝑂 (𝑙)
𝑚𝑎𝑥 =𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙)
𝑚𝑖𝑛 =𝑚𝑖𝑛_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙)
𝑏𝑖𝑛𝑠 = 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 (𝑚𝑖𝑛,𝑚𝑎𝑥, 2𝑛)
(𝐶,𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑊 ) = 𝐾𝑚𝑒𝑎𝑛𝑠 (𝑏𝑖𝑛𝑠, (𝐶,𝑊 ))

end for
return 𝑇𝑜𝐿𝑎𝑦𝑒𝑟 (𝐶,𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑊 )

This approach replaces 32-bit weights with 𝑛-bit indices, and
𝑙bins is stored as a lookup table. The compression rate is given by.

2𝑛 ×weight_data_size + 𝑛 × number_of_weights
number_of_weights ×weight_data_size

(6)

=
2𝑛

number_of_weights
+ 𝑛

weight_data_size
(7)

2.3 Fast Signed Gradient Method (FGSM)
FGSM is a simple, widely used method for generating adversarial
examples [7]. It exploits a model’s gradient information to perturb
the input x in the direction that maximally increases (3). Given
some input, label pairs 𝑥,𝑦, FGSM generates an adversarial example
𝑥adv using:

𝑥adv = 𝑥 + 𝜖 · sign(∇𝑥 ℓ (ℎ(𝑥), 𝑦)) (8)

where 𝜖 controls the perturbation magnitude, and subsequently
the strength of attack. Although stronger attacks exist, for our
purposes, FGSM generates sufficiently strong adversarial examples
which drastically reduce test accuracy – highlighting the difference
in dynamics between models and their compressed counterparts.
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2.4 MaximumMargin Regularization (MMR)
MMR enforces larger separations between the predicted logits of
the correct class and the next largest logits, thereby encouraging
smoother decision boundaries and thus, a model’s robustness to-
wards small perturbations [21]. Given the logits 𝑧 of ℎ for an input
𝑥 , we define the maximum margin loss as:

MM(𝑧,𝑦) = max
(
0, 1 −

(
𝑧𝑦 −max

𝑖≠𝑦
𝑧𝑖

))
(9)

Where 𝑧𝑦 is the logit of the correct class and max𝑖≠𝑦 𝑧𝑖 is the largest
logit among incorrect classes. Since each 𝑧𝑖 ∈ [0, 1], the margin 1
ensures a minimum gap between classes, as well as the continuity
of MM.

Across the entire dataset, we choose a penalty constant 𝜆 > 0:

ℓMM = 𝜆 ∗MM (10)

Which controls the strength of the regularization. This comple-
ments standard cross-entropy loss, improving robustness by creat-
ing smoother decision boundaries between classes.

2.5 Adversarial Training
Adversarial training explicitly trains the model on adversarial ex-
amples in addition to clean ones, and seeks to solve:

min
ℎ

E(𝑥,𝑦) max
𝛿∈Δ𝜖

ℓ (ℎ(𝑥 + 𝛿), 𝑦) (11)

In practice, (11) is solved iteratively using ERM: running a speci-
fied attack to generate adversarial examples, and taking a step using
an optimization algorithm.

2.6 Proposed Retraining Algorithm
We integrate compression, MMR and adversarial training into a
simple compression and retraining pipeline presented in Alg 7:

Algorithm 7 Compression with Adversarial Robust Retraining
Require: Model ℎ, dataset D, pruning method A, pruning rate 𝑟 ,

perturbation magnitude 𝜖 , margin weight 𝜆, total epochs 𝑇 .
Initialize pruned model: ℎpruned = A(ℎ, 𝑟 )
for epoch 𝑡 = 1 to 𝑇 do

for (𝑥,𝑦) ∈ D do
Generate adversarial examples using FGSM:

𝑥adv = 𝑥 + 𝜖 · sign(∇𝑥 ℓ (ℎpruned (𝑥), 𝑦))
Combine inputs:

Xcombined = {𝑥, 𝑥adv}
Ycombined = {𝑦,𝑦}

Forward pass:

𝑧 = ℎpruned (Xcombined)
Compute cross-entropy loss:

LCE = ℓ (𝑧,Ycombined)
Compute maximum margin regularization loss:

LMM = 𝜆 ·MarginLoss(𝑧,Ycombined)
Compute total loss: Ltotal = LCE + LMM
Backpropagation: step(∇ℎLtotal)

end for
end for
return model ℎpruned

3 Experiments and Evaluation
In our experiments, we aim to evaluate the impact of different
compression and adversarial robustness techniques on a VGG16
model trained on the ILSVRC 2012 subset of the ImageNet dataset
[18] [3]. These images are categorized into 1,000 distinct classes
with images resized to a standard resolution of 224 x 224 pixels.
Though this dataset consists of over 1.2 million, we only use the
50,000 validation images due to resource constraints. We split the
validation set into a retrain set of 40k images and a test set of 10k
images for validation and adversarial robustness evaluation. We
conduct all pruning experiments on an NVIDIA Tesla P100 GPU
and all robustness experiments using an NVIDIA Tesla A100 GPU.

3.1 Pruning
3.1.1 Accuracy. We implement the four pruningmethods discussed
in Sect 2. Observe that structured methods further constrain prun-
ing, meaning larger weights in magnitude may disappear, and thus,
lower accuracy.
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(a) Pruning Accuracy With and Without Retraining

(b) Global vs Layer-wise Unstruc-
tured Pruning

(c) Hardened vs Iterative Unstruc-
tured Pruning

Figure 1: Pruning Method Impact on Accuracy

Indeed, Figure 1a confirms our intuition, showing that struc-
tured pruning exhibits faster accuracy dropoff across the tested
prune rates. However, we also observe that iterative pruning with
retraining softens the accuracy drop from exponential to linear
decay.

3.1.2 Sparsity Distribution. As expected, layer-wise unstructured
pruning results in a uniform distribution of sparsity across layers
shown in Figure 2. Interestingly, Global Unstructured Pruning ad-
mits a left-skewed sparsity distribution as shown Figure 2. Hence,
we conclude the linear layers, which occur later in the model, tend
to have the majority of smaller magnitude weights, though we
cannot directly attribute this to any single cause.

(a) Global Unstructured (b) Layer-Wise Unstructured

Figure 2: Sparsity Rates by Prunable Layer

3.1.3 Hardening. After using Algorithm 4 to graft the structurally
pruned model, Figure 1a shows identical accuracy curves between
the pruned model and it’s hardened counterpart, indicating inde-
pendence between model accuracy with respect to prune rate and
model dimension.

Figure 3: Compression Rate vs Pruning Rate

In Figure 3, notice that iterative pruning, while maintaining ac-
curacy higher than structured pruning, yields identical memory
advantages. This indicates that iterative pruning both yields the
memory benefits of structural pruning and maintains better accu-
racy.

Figure 4: Runtime of Hardened, Iterative Pruning

Figure 4 demonstrates a modest runtime improvement in the
hardened model, which we attribute to its smaller size, though, this
gain may be hardware dependent.

3.2 Weight-Sharing
We applied Algorithm 6 to our model at various pruning rates,
utilizing 28 bins for convolutional layers and 25 bins for linear
layers. We seek to analyze the error introduced by weight-sharing.

Figure 5: Global Pruning Accuracy: Quantized vs Normal

Figure 5 indicates that weight sharing incurs a marginal cost in
accuracy (around 1%-2%), independent of the pruning rate. This
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agrees with prior literature as many weights are adjusted away
from optimal sets [10].

(a) Convolutional Layer 0 (b) Linear Layer 0

(c) Convolutional Layer 0, Quan-
tized

(d) Linear Layer 0, Quantized

Figure 6: Occurrence Distribution: Quantized vs Unquantized

We confirm in Figure 6 the discretization of layer weights, grant-
ing us the corresponding guarantee 7.

3.3 Decision Boundary Smoothness
Prior literature establishes an intimate connection between decision
boundary smoothness and robustness [4]. Indeed, models which are
more susceptible to small perturbations in input should intuitively
exhibit less smooth boundaries. Since these compressed models
demonstrate lower robustness, we sought to further explore the
smoothness of their decision boundaries.

To evaluate the impact of compression on model robustness,
we employed a visualization heuristic to the high-dimensional im-
age inputs into a two-dimensional space, allowing us to inspect
boundary characteristics.

Specifically, using PCA, we reduced the input data into two prin-
cipal components, to capture the highest possible variance of the
original data. We then sample a grid of points in this reduced space
and map back to the input space using the inverse transformation.
We compute predictions for each point on this grid, enabling us to
plot decision boundaries as regions of different predicted classes.
We conduct our analysis on each pruning technique with and with-
out weight-sharing and attach some of our results in Figure 7 along
with their robust accuracy to FGSM. The darker colors indicate
high confidence and smoother boundaries, while the lighter ones
and greys indicate lower confidence and more granular boundaries.
Interestingly, we find that weight-sharing does not seem to impact
either robustness or smoothness by much (if at all). It’s clear to see
our figures support our intuition about smoothness.

(a) Baseline VGG16, RA = 12.6% (b) Layer-wise, RA = 8.5%

(c) Layer-wise Output, RA = 8.8% (d) Global, RA = 5.7%

Figure 7: Decision Boundary Smoothness

3.4 Robustness
Given the results in Figure 7, we use smoothness as a proxy for
robustness to define Algorithm 7, where the MMR term seeks to
smooth the decision boundary in conjunction with adversarial
training using FGSM.We run Alg 7 for 1 epoch onwhat we observed
to be the most successful pruning technique, global unstructured
pruning with 50% prune rate, followed by weight-sharing. Our
hyperparameters are located in Appendix C. Note that due to the
small quantity of training data, VGG16 tends to overfit extremely
quickly, even in the presence of high regularization. Still, we obtain
noteworthy results shown in Table 1.

Table 1: Performance and Robustness Comparison

Model Acc (%) Rob. Acc (%) Approx Size (MB)

Baseline 71.8 12.0 534.3
Pruned 57.0 5.8 263.9
Pruned + Retrained 64.2 10.3 263.9
Pruned + Adv Ret. 54.6 25.6 263.9
Pruned + Adv Ret. + WS 55.5 23.9 45.5

Note that we calculate approximate model size using

Approximate Model Size = of Nonzero parameters ∗ Precision
Retraining with Algorithm 7 demonstrates a notable improvement
in robust accuracy: more than 2x the baseline and recovering much
of the robustness lost during pruning, recovering as much as 5x. Fig-
ure 8 further supports our boundary smoothing argument, showing
that Algorithm 7 results in significantly smoother contours.
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(a) Pruned VGG16, RA = 5.8% (b) Pruned VGG16 w/ Alg 7, RA =
25.6%

Figure 8: Impact of Alg 7 on Boundary Smoothness

Although the integration of adversarial retraining and weight-
sharing leads to a reduction in accuracy, we argue this behavior is
expected, given the sparse retraining data, short training time (1
epoch), and injection of an adversarial example for each clean one.

4 Discussion
Our study reveals a nuanced trade-off between model compres-
sion, adversarial robustness, and accuracy retention. By combining
pruning, weight sharing, and adversarial retraining, we signifi-
cantly reduced model size while improving robust accuracy. The
key insight is that pruning and quantization induce nonsmooth
decision boundaries, which we aim to smooth through adversarial
retraining with maximum margin regularization. This technique
improves robustness by enlarging the separation between class
logits, making the model resistant to adversarial perturbations.
Although our approach doubled robust accuracy against FGSM at-
tacks, the constrained training set and limited computing restricted
our exploration of more advanced attacks.

4.1 Limitations
Despite promising results, this work faces several crucial limita-
tions.

• Pytorch Storage Formatting PyTorch’s default model stor-
age format prevents direct comparison of custom quantized
model sizes. Future work should leverage the weight shared
model to reduce model persist size using Huffman encoding
or other lossless compression.

• Restricted Training Data: Due to our computational bud-
get, we only used a subset of the ILSVRC 2012 validation
dataset, limiting our ability to generalize results. Future work
should attempt retraining on the training dataset, or perform-
ing pruning and adversarial training while training VGG16
from scratch.

• Attack Coverage: We only tested robustness using FGSM,
a one-step, and therefore weaker attack. Future work should
explore stronger attacks like Projected Gradient Descent
(PGD), AutoAttack, and DeepFool in addition to black-box
attacks.

• Regularization TechniquesWhile our study focused onMMR,
we encourage future research to explore the structural prop-
erties of compressed models further. Notably, global unstruc-
tured pruning led to uneven layerwise sparsity, creating
potential information bottlenecks. Investigating how these
sparsity patterns impact adversarial robustness from a theo-
retical perspective remains an open and underexplored area.

4.2 Conclusions
Overall, these results suggest that deep compression and adver-
sarial robustness are not mutually exclusive and can be leveraged
together for deployment in safety-critical and resource-constrained
environments. Addressing the highlighted limitations and future
directions could unlock even greater potential in this underexplored
intersection of model compression and adversarial robustness.
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A Related Works
Adversarial robustness is a rich field focused on designing models
resilient to adversarial attacks [7]. Methods like adversarial training
[13] and certified defenses [15] have been widely studied, albeit
on smaller datasets and without the added challenge of model
compression.

Model compression techniques such as pruning [11], quantiza-
tion [12], and weight-sharing [10] aim to reduce model size and
inference latency. However, compressing models often exacerbates
their vulnerability to adversarial attacks due to altered decision
boundaries [9]. Studies like Benchmarking Adversarial Robustness
of Compressed Models [19] demonstrate that pruning and quantiza-
tion can reduce model robustness unless integrated with retraining
strategies.

Our approach draws inspiration from [1] gives guarantees for
models trained on ImageNet through random smoothing. [8] gives
a unified optimization framework for robustness and compression,
which we adopt in conjunction with [2] which gives robustness
guarantees bymaximizing linear region through polytope analysis –
essentially a layerwise, more granular implementation of the MMR
penalty. Our work extends empirically extends this line of research
to the setting of compression integrating MMR into a compression-
aware adversarial training pipeline, targeting both efficiency and
robustness.

B VGG16 Structure
The model uses 13 convolutional layers, with 5 max pooling layers
interspersed, and 3 linear layers.

Figure 9: VGG16 Architecture

C Hyperparameters

Table 2: Parameters for the Robust Compression Algorithm

Parameter Value/Description
epochs 1
batch size 128
pruning_method prune.L1Unstructured

prune_amount 50%
optimizer SGD (lr=0.005, weight_decay=0.005, momentum=0.9)
epsilon 0.03 (FGSM perturbation magnitude)
margin_weight 0.1 (Maximum margin regularization weight)
attack FGSM (Fast Gradient Sign Method)
weight_sharing 8 bits (Convolutional layers), 5 bits (Fully connected layers)
prune_targets model.features (Convolutions) & model.classifier (Linears)
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