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ABSTRACT

Offline Reinforcement Learning (RL) aims to learn policies from fixed datasets
without active environmental interaction, but often suffers from overestimated Q-
values on out-of-distribution (OOD) state-action pairs. In this paper, we propose
Conformal SAC, a lightweight and theoretically grounded approach that integrates
Conformal Prediction, a distribution-free uncertainty quantification method, into
the Soft Actor-Critic (SAC) model for offline RL. Conformal SAC constructs
finite-sample prediction intervals around Q-value estimates, using their width to
adaptively down-weight uncertain actions during policy learning. Unlike ensem-
ble or bootstrap-based uncertainty estimates, conformal prediction is computa-
tionally efficient and enjoys formal coverage guarantees without drastic changes to
the underlying RL architecture. We provide theoretical support for both marginal
and group-conditional coverage, and demonstrate improved stability and robust-
ness across benchmark control tasks. In particular, we show how conformal in-
tervals mitigate erratic behavior in bang-bang control problems by explicitly ac-
counting for uncertainty in the learned value function. Empirically, our approach
achieves competitive performance with strong model-free offline RL baselines,
highlighting how tools from statistical inference and causal reasoning can pro-
mote safer, more reliable offline policy learning with minimal overhead.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated remarkable success across a wide range of sequen-
tial decision-making tasks—from robotic control to video games to large language model alignment
(Sutton & Barto, 2018; Ziegler et al., 2019). However, its real-world deployment is often hindered
by the impracticality, cost, or danger of direct environment interaction (Dulac-Arnold et al., 2019).
In such settings, Offline RL provides an appealing alternative: policies are trained from pre-collected
datasets without further environment access (Levine et al., 2020). Yet, this paradigm introduces new
challenges, particularly the problem of distributional shift. When a learned policy encounters out-
of-distribution (OOD) state, action pairs, the Q-function rapidly increases (due to the max operator
within the Bellman update), producing over-optimistic value estimates at the expense of generaliza-
tion(Fujimoto et al., 2019; Kumar et al., 2020a).

To address this, several approaches have been proposed. Behavior-constrained algorithms like
TD3+BC (Fujimoto & Gu, 2021), AWAC (Nair et al., 2020), and IQL (Kostrikov et al., 2021) guide
the policy to stay close to the data, often at the cost of limited exploration. Other methods inject
pessimism directly into value estimates to avoid unreliable OOD actions. Conservative Q-Learning
(CQL) (Kumar et al., 2020a), for instance, penalizes Q-values on unseen actions, while ensemble-
based methods like EDAC (An et al., 2021) and dropout-based techniques like UWAC (Wu et al.,
2021) use heuristic uncertainty estimates to regularize training. While effective, these approaches
either lack statistical coverage guarantees or require significant computational overhead.

We propose Conformal SAC, a simple yet theoretically grounded alternative that integrates confor-
mal prediction into model-free actor-critic methods. Using split-conformal calibration (Lei et al.,
2017; Romano et al., 2019; Angelopoulos & Bates, 2021), we construct finite-sample prediction in-
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tervals around Q-values, enabling the policy to avoid uncertain actions and safely exploit confident
ones. Our approach retains the architectural simplicity of standard actor-critic algorithms and does
not require ensembles, behavior cloning, or explicit dynamics modeling. Additionally, we extend
our method to achieve group-conditional coverage, enabling localized uncertainty calibration over
subsets of the state-action space.

We establish theoretical guarantees for both marginal and group-based coverage of Q-values
and demonstrate empirically that our approach improves robustness, reduces overestimation, and
enhances policy stability across benchmark offline RL tasks. In particular, we validate the
method on bang-bang control problems—where optimal actions lie on the boundary of the action
space—highlighting how conformal prediction provides safe, data-driven conservatism.

2 RELATED WORKS

Offline Reinforcement Learning has made significant progress in addressing distributional shift
and extrapolation error, which arise when policies evaluate or act on out-of-distribution (OOD) state-
action pairs. Model-free approaches like Conservative Q-Learning (CQL) Kumar et al. (2020a)
tackle this by penalizing Q-values for OOD actions, encouraging conservative estimates. How-
ever, CQL’s fixed penalty can limit expressiveness and lead to underutilization of good but rare
actions. Other approaches trade off conservatism and behavior cloning: TD3+BC Fujimoto & Gu
(2021) adds a weighted BC loss to TD3, while AWAC Nair et al. (2020) and IQL Kostrikov et al.
(2021) leverage advantage-weighted behavior cloning to selectively reinforce strong actions from
the dataset. Ensemble-based methods like EDAC An et al. (2021) improve epistemic uncertainty
estimates via Q-network diversification, while dropout-based approaches such as UWAC Wu et al.
(2021) offer lower overhead approximations. These methods aim to mitigate overestimation by us-
ing heuristics or pessimism to implicitly model uncertainty. However, they lack formal coverage
guarantees and often require expensive ensemble training or behavior regularization. Model-based
methods like MOPO Yu et al. (2020) and MOReL Kidambi et al. (2020) enforce conservatism by
generating pessimistic rollouts, but suffer from model bias and compounding error, especially on
high-dimensional or complex tasks.

Conformal Prediction provides a complementary approach by offering distribution-free uncertainty
quantification with finite-sample coverage guarantees. Originally developed for supervised settings
Vovk et al. (2018), conformal prediction techniques construct predictive intervals that contain the
true output with a user-specified probability, without strong assumptions on the data distribution.
Split conformal prediction Lei et al. (2017); Romano et al. (2019); Angelopoulos & Bates (2021) has
emerged as a practical variant, requiring only a calibration set to determine quantile thresholds. In
RL, conformal prediction has been explored for safe policy improvement Petrik et al. (2016), policy
evaluation Thomas et al. (2015), and in some cases for distributional value estimation Dabney et al.
(2018). However, these methods assume access to on-policy rollouts, focus on model-based regimes,
or impose strong structural assumptions. Few have explored the use of conformal prediction directly
within model-free actor-critic architectures, where value function errors can propagate and amplify
in unexpected ways.

Our approach builds on these ideas by integrating conformal prediction into model-free offline
RL, offering an efficient and principled method for quantifying Q-function uncertainty. We apply
split conformal calibration to the critic’s residuals, constructing prediction intervals that guide policy
updates via uncertainty-aware penalization. Unlike CQL’s fixed conservatism or ensemble/dropout-
based heuristics, our method uses a single Q-network and provides finite-sample statistical coverage
for Q-value estimates. Moreover, we extend this to group-conditional coverage via GroupSplitCon-
formal, enabling localized uncertainty calibration across state-action subspaces. As such, Conformal
Actor-Critic emerges as a more adaptive, optimistic alternative CQL armed with explicit uncertainty-
quanitification.
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3 PRELIMINARIES

3.1 OFFLINE REINFORCEMENT LEARNING

Offline Reinforcement Learning (Offline RL) addresses scenarios where an agent learns from a fixed
dataset without interacting with the environment.

3.1.1 MARKOV DECISION PROCESS (MDP)

As in standard RL literature, an MDP is defined by the tupleM = (S,A, P,R, γ), where S defines
the state space, A defines the action space, P (s′|s, a) denotes the transition probability function,
|R(s, a)| ≤ BR represents the reward function R whose values are bounded by BR, and γ ∈
[0, 1] denotes the discount factor. The goal is to find a policy π(a|s) that maximizes the expected
cumulative reward:

J(π) = Eτ∼π

[ ∞∑
t=0

γtR(st, at)

]
. (1)

where τ = (s0, a0, s1, a1, . . . ) denotes a trajectory.

We assume access to a dataset D = (s, a, r, s′) of tuples generated from trajectories sampled from
a behavior policy πβ which typically correspond to some level of skill

3.1.2 BELLMAN EQUATION

The Bellman equation describes how to compute optimal policies in an MDP. Since the data is
Markovian, it suffices to use the principle of dynamic programming, making locally optimal choices
at each time step yields a globally optimal solution.

Formally, the action-value function Qπ(s, a) measures the expected return when starting from state
s, taking action a, and following policy π thereafter:

Qπ(s, a) = Eτ∼π

[ ∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
(2)

We denote the value function V induced by the policy π as:

V π(s) = Ea∼π(·|s) [Qπ(s, a)] (3)

The optimal action-value Q∗(s, a) respects Bellman Optimality:

Q∗(s, a) = Eτ∼P
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
(4)

This expresses the expected cumulative reward from taking action a in state s, receiving immediate
reward R(s, a), and continuing optimally from the next state s′.

3.1.3 POLICY AND Q-FUNCTION UPDATES UNDER ACTOR CRITIC

Q-learning methods parameterize the action-value function Qθ(s, a) and update it through the Bell-
man backup operator:

Qθ(s, a)← R(s, a) + γmax
a′

Qθ(s
′, a′) (5)

Actor-Critic methods extend this by maintaining a separate policy πϕ(a|s). The policy πϕ is updated
to maximize expected Q-values, while the Q-function is updated using samples from the dataset:
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Policy Evaluation (Q-function Update):

Qk+1
θ ← argmin

Q
E(s,a,r,s′)∼D

[(
R(s, a) + γEa′∼πϕ(a′|s′)[Q

k
θ(s

′, a′)]−Q(s, a)
)2]

(6)

Note that equation 6 simply minimizes the temporal difference error, that is, the MSE between the
Bellman backup target and the predicted Q-value.

Policy Improvement (Policy Update):
πk+1
ϕ ← argmax

π
Es∼D

[
Ea∼π(a|s)[Qk+1

θ (s, a)]
]

(7)

3.1.4 EXTRAPOLATION ERROR

Given that D is finite, it follows quite naturally that training suffers from distribution shifs in the
actions. The Bellman backup requires evaluating Qθ(s′, a′) for actions a′ ∼ πϕ(a

′|s′), which may
not be present in the dataset. Since the Q-function is trained on in-distribution actions only, it can
overestimate the value of out-of-distribution (OOD) actions due to the max operator:

Qθ(s, a) = R(s, a) + γmax
a′

Qθ(s
′, a′) (8)

In the online setting, one can correct for this by taking the action, observing the resulting lower
value, and taking the correct gradient step. However, the nature of the Offline RL setting with a
priori trajectory data does not afford this flexibility.

3.1.5 CQL

For the purposes of theoretical analysis, we’ll focus on analysis of Conservative Q-Learning (Kumar
et al., 2020a), which addresses extrapolation error by penalizing Q-values for OOD actions. The
CQL objective modifies the standard Q-function updates with:

Qk+1
θ = argmin

Q
αEs∼D,a∼µ(a|s)[Q(s, a)]

+
1

2
E(s,a,r,s′)∼D

[
Q(s, a)−

(
R(s, a) + γmax

a′
Qkθ(s

′, a′)
)]2

(9)

The parameter α controls OOD penalty magnitude and µ(a | s) denotes a sampling distribution over
actions, chosen to include OOD actions.

To avoid penalizing in-distribution actions, CQL introduces a correction term based on the behavior
policy πβ(a | s), giving:

Qk+1
θ = argmin

Q
α
(
Es∼D,a∼µ(a|s)[Q(s, a)]− Es∼D,a∼πβ(a|s)[Q(s, a)]

)
+

1

2
E(s,a,r,s′)∼D

[
Q(s, a)−

(
r + γmax

a′
Qkθ(s

′, a′)
)]2

(10)

Here, Es∼D,a∼πβ(a|s)[Q(s, a)] denotes the expectedQ-value of actions likely based on the behavior
policy. The subtraction term offsets the penalty on in-distribution actions, making the learned Q-
function more conservative only for uncertain or OOD actions.

3.2 CONFORMAL PREDICTION

Conformal prediction constructs prediction intervals for a model’s outputs. Given a calibration
dataset Dcal and a predictor f , split conformal prediction computes a confidence interval C(s, a):

Ĉ(s, a) = [f(si, ai)− qα, f(si, ai) + qα], (11)
where qα is the (1− α) quantile of nonconformity scores αi = |f(si, ai)− yi| over Dcal.

Using split conformal prediction in our setting, we construct a conformal prediction interval for an
unseen state-action pair (sm+1, am+1) as follows:

Ĉ(sm+1, am+1) = [f(sm+1, am+1)− qα, f(sm+1, am+1) + qα] (12)
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4 CONFORMAL ACTOR-CRITIC

Conformal Actor-Critic introduces statistical coverage guarantees by integrating conformal predic-
tion into an actor-critic framework, while addressing extrapolation error. Our algorithm integrates
conformal intervals into the standard actor-critic procedure.

We start with an offline dataset and designed calibration subset. In each training iteration, we first
compute the (1–α)-quantile of our Q-value estimation errors, which serves as a measure of the
model’s uncertainty. The subsequent actor and critic updates performed on a sampled minibatch
are relatively standard; we update the Q-network is updated by minimizing MSE across the mini-
batch, and the policy network is updated by maximizing the expected Q-values while incorporating
a regularization term proportional to the uncertainty measure.

The algorithm pseudo-code is presented below.

Algorithm 1 Conformal Soft Actor-Critic (Conformal SAC)

1: Input: Offline dataset D = {(si, ai, ri, s′i)}Ni=1, calibration set Dcalib ⊂ D, confidence level
1− α, smoothing factor τ

2: Initialize policy πϕ, Q-networks Qθ1 , Qθ2 , value network Vψ , target network Vψ′ ← Vψ
3: Initialize conformal threshold qα ← 0
4: for each training iteration do
5: Sample batch B = {(s, a, r, s′, d)} ⊂ D
6: Critic (Q-function) Update:
7: Estimate targets:

y = r + γ(1− d) · Vψ′(s′)

8: Compute MSE loss:
LQi

= E
[
(Qθi(s, a)− y)

2
]

9: Update Qθ1 , Qθ2 using gradient descent
10: Policy Update:
11: Sample a ∼ πϕ(·|s) and compute:

Lπ = Es [η log πϕ(a|s)−min(Qθ1(s, a), Qθ2(s, a))]

12: Update policy πϕ
13: Value Function Update:
14: Estimate Qmin = min(Qθ1(s, a), Qθ2(s, a))
15: Estimate entropy-regularized target:

yV = Qmin − η log πϕ(a|s)

16: Apply conformal penalty:
y′V = yV · (1− q̃α)

where q̃α = qα
std(yV )+ϵ

17: Update Vψ by minimizing:

LV = E
[
(Vψ(s)− y′V )

2
]

18: Target Network Update: ψ′ ← τψ + (1− τ)ψ′

19: Calibrate Conformal Threshold:
20: Sample (s, a, r, s′) ∈ Dcalib and compute residuals:

αi = |Qθ1(s, a)− (r + γVψ′(s′))|

21: Set qα ← Quantile({αi}, 1− α)
22: end for

We also consider a more adaptive algorithm, which calibrates the choices of quantiles based on
groups. Similar to canonical group constructions, we can consider groups here as similar clusters of
state-action pairs. Let G ⊆ 2S×A be some collection of groups. We assume such groups Gj ∈ G to
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be well-defined, i.e. sufficiently large and incomparable (meaning no group is a subset of another),
ensuring that these groups generally cover the state-action space.

Since we want coverage over each group, we choose our conformal interval length as a function of
the group/state-action pair. Therefore, we introduce another function g : S×A → R that determines
the threshold for that pair, specifying the interval construction. Define g(s, a) as:

g(s, a) =

J∑
j=1

λj gj(s, a) (13)

where gj(s, a) is an indicator variable specifying if the state-action pair belongs to group j. We
define the GroupSplitConformal algorithm below.

Algorithm 2 Group Offline Conformal Actor-Critic (GroupSplitConformal)

1: Input: Offline dataset D = {(si, ai, ri, s′i)}Ni=1, calibration set Dcal ⊆ D, groups {Gj}Jj=1,
regularization parameter η, confidence level 1− α

2: Initialize Q-network Qθ, policy network πϕ, and learning rates
3: for each training iteration do
4: Sample a minibatch B ⊆ D
5: Critic Update (Q-network):

LQ =
1

|B|
∑

(s,a,r,s′)∈B

(
r + γEa′∼πϕ(·|s′)Qθ(s

′, a′)−Qθ(s, a)
)2

6: Update Qθ by minimizing LQ
7: Fit Group-Adaptive Thresholds:
8: Compute nonconformity scores for Dcal: αi = |Qθ(si, ai)− yi|
9: Let λ∗ be the solution to the optimization problem:

λ∗ = argmin
λ

E(s,a)∼Dcal [L1−α(g(s;λ), α)] + η∥λ∥1,

where

g(s, a;λ) =

J∑
j=1

λjgj(s, a),

and L1−α is a loss function ensuring quantile consistency within each group.
10: Set g(s, a) = g(s, a;λ∗)
11: Actor Update (Policy Network):
12: Given g(s, a), define intervals Ĉ(s, a) = [Qθ(s, a)− g(s, a), Qθ(s, a) + g(s, a)].
13: Incorporate g into the actor loss:

Lπ = − 1

|B|
∑
s∈B

Ea∼πϕ(·|s)[Qθ(s, a)] + λ∗E(s,a)∼Dcal [g(s, a)],

14: Update πϕ by minimizing Lπ .
15: end for

4.1 THEOREMS

We present theoretical guarantees to establish that our conformal prediction algorithm provides
finite-sample coverage guarantees and constructs prediction intervals that are effective for uncer-
tainty quantification.

Assumption 1 (Consistent Q-value estimates) The Q-value labels yi are consistent estimates of
Qπ(si, ai), i.e. E[|yi −Qπ(si, ai)|]→ 0 as |Dcal| → ∞
1

1Standard in RL theory, with sufficient calibration data the estimation error should vanish. Note that without
such consistency, any learning/Bellman updating will always have non-trivial errors.
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Definition 1 (Nonconformity Score) For a state-action pair (s, a), define the nonconformity score
as:

α = |f(s, a)− yi|
where f : S ×A → R is the learned Q-value predictor.

We want to learn the associated Q-values for all state action pairs. For each (si, ai) in our dataset
D, we let yi be the target Q-value for that state action pair. With access to such labels, optimizing
over our Bellman equation is trivial.

Theorem 1 (Conformal Coverage) Suppose that the calibration datasetDcal = (s, a, r, s′) of size
m is exchangeable. Consider the test point (sm+1, am+1, ym+1). Furthermore, let qα be the (1 −
α)(1+ 1

m )-quantile for each score qα Then, the conformal prediction interval Ĉ(s, a) = [fθ(s, a)−
qα, fθ(s, a) + qα] from ?? satisfies the standard marginal coverage guarantee:

P (ym+1 ∈ Ĉ(sm+1, am+1)) ∈ [1− δ, 1− δ + 1

m+ 1
] (14)

Proof Sketch: Similar to standard conformal marginal coverage proofs; sort nonconformity scores
in increasing order, and use uniformity of scores and exchangeable data points to show lower and
upper bound. See more detailed proofs in Appendix A.

We now present a group-conditional coverage guarantee. Under GroupSplitConformal, we have the
following conditional group guarantee.

Theorem 2 (Group-Conditional Coverage) Let G = {Gj}Jj=1 be a collection of groups defined
over S × A. Assume that each group Gj is sufficiently large and incomparable (i.e., no group is a
subset of another). Applying the GroupSplitConformal algorithm, the prediction intervals satisfy:

1− α− ϵj ≤ P
(
y ∈ Ĉ(s, a) | (s, a) ∈ Gj

)
≤ 1− α+ ϵj ,

where ϵj = O(
√

α
µ(Gj)

) and µ(Gj) denotes the proportion of the calibration data in group Gj .

Proof Sketch: Follows from Proof of Theorem 35 in Roth (2024). By assigning adaptive thresholds
g(s, a) that depend on the group membership of (s,a), the resulting intervals achieve approximately
valid conditional coverage in each group. The error term ϵ vanishes as the calibration data size
within each group grows.

We now present a few theorems relating Conformal Actor-Critic to related literature, particularly
the CQL framework. As mentioned above, CQL adds a regularization term to the Bellman update.
We generally show that Conformal Actor-Critic is more optimistic than CQL, but also remaining
conservative.

In particular, we show that if the policy uses the lower end of the prediction intervals to make
decisions, the resulting policy performs close to the behavior policy. Define the lower confidence
bound as L(s, a) := f(s, a)− qα where f and qα defined analogously to above.

Theorem 3 (Conformal Actor-Critic is Conservative) Assume that labels yi are consistent, and
Theorem 1 holds. Define the policy πL(a|s) := argmaxa′ L(s, a′). Then, the value function re-
sulting from πL approaches closer to the value function from the behavior policy as the dataset size
grows. Formally, there exists a function ϵ(m,α) such that with probability ≥ 1− α,

VπL
(s) ≥ Vπβ

(s)− ϵ(m,α) ∀s ∈ S
where ϵ(m,α) is the error gap, and ϵ(m,α)→ 0 as m→∞.

Proof Sketch: L(s, a) is a lower confidence bound for Qπ(s, a) w.h.p. and as actions are selected
based on the adaptive policy, the difference only stems from dataset size.

Theorem 4 (Conformal Actor-Critic is More Optimistic than CQL) Consider standard Con-
servative Q-Learning (CQL) which learns a Q-function QCQL(s, a) with a uniform regularization
term. Suppose as |D| → ∞, the learned predictor fθ(s, a) converges to Qπ(s, a) and qα → 0.
Then, with probability ≥ 1− α,

L(s, a) = fθ(s, a)− qα ≥ QCQL(s, a) ∀(s, a) ∈ supp(πβ).
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Proof Sketch: CQL ensures no worse than behavior policy performance if Q-values are underesti-
mated. Here, the conformal interval lower endpoint f(s, a)− qα acts like a lower bound dependent
on the calibration dataset. Since it contains the true Q-value with high probability, selecting actions
that maximize this lower bound avoids actions that would drastically reduce return. As our confor-
mal intervals become tighter with more data, the conformal lower bound can exceed the uniformly
lowered Q-values from CQL, allowing more optimism where justified by the data.

We note that in the CQL framework, a uniform regularization penalty is added to avoid overes-
timation. With Conformal Actor-Critic, the intervals are constructed such that the regularization-
equivalent term qα – the length of the interval – shrinks as the dataset size grows. In our context,
the computed quantiles qα serve a similar purpose to the regularization term in CQL; however, since
these quantiles converge to 0 as the dataset size increases, we are able to show more optimistic
estimates due to conformal prediction’s data dependent approach.

4.2 BANG-BANG CONTROLLERS

Bang-bang controllers are a class of control systems that operate by switching between extreme
states or actions, rather than continuously modulating control inputs. The most well-known appli-
cation of bang-bang controllers is in thermostats, where the whole system turns on if the current
temperature is above the desired threshold, and remains off otherwise. In classical control theory,
time-optimal control problems for linear systems with bounded inputs often result in bang-bang
solutions. Specifically, consider a linear system governed by

ẋ(t) = Ax(t) +Bu(t),

where u(t) ∈ U = {−1, 1}m. Under the analysis of Liberzon (2011), the Pontryagin Maximum
Principle ensures that the optimal control u∗(t) switches between its extreme values of 1 and −1,
and the number of sign switches is finite. This means that the optimal solution lies on the boundary
of the convex hull.

Although such controllers can be simple in construction, they can exhibit abrupt behavior that may
lead to instability or unsafe operations. To address this, we apply Conformal Actor-Critic to bang-
bang controllers, showing that the constructed prediction intervals can result in less volatile and
unstable behavior. Since action choices all lie on the boundary of the convex hull of the action
space, Conformal Actor-Critic allows us to quantify uncertainty in Q-values of certain state-action
pairs and thus have a more stable system.

Mathematical Framework:

Consider a finite state space S and a discrete action space A = {−amax, amax}d, where amax > 0.
Let the transition probability functionP (s′|s, a) and reward functionR(s, a) be defined as in Section
2.1.1. The policy function πθ(a|s) is a bang-bang policy that selects actions from the corners of the
d-dimensional action space hypercube.

In our Conformal Actor-Critic algorithms, after updating the Q-network to minimize the Bellman
error, we compute conformal prediction intervals

Ĉ(s, a) = [Qθ(s, a)− qα, Qθ(s, a) + qα],

using the calibration set Dcal, where qα is the quantile computed from the calibration data. Then,
during the policy update, the actor incorporates qα to adjust the policy towards actions with lower
uncertainty. The actor update which minimizes Lπ in Algorithm ?? is particularly relevant. Note
that by Theorem 1, conformal coverage holds under our discrete action space, and Theorem 2 and
Algorithm 2 can be used to extend group guarantees. In particular, the state-action pairs can be
partitioned into groups corresponding to a certain operating regime, i.e. a set of safe states Ssafe ⊆ S.

We now show that the estimated quantiles from the data are close to the actual quantiles. This
follows from a straightforward application of the Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality,
which provides uniform convergence guarantees for the empirical distribution function.

To find qα, we use the empirical CDF of nonconformity scores:

F̂α(c) =
1

m

m∑
i=1

I [αi ≤ c] .
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Note that the true CDF under the data distribution is:

Fα(c) = P (α ≤ c) .

Claim 1 (Quantile Consistency) Let {αi}mi=1 be i.i.d. samples from a distribution with CDF Fα.
Define the true (1− α)-quantile as

qα := inf{c : Fα(c) ≥ 1− α},

and the empirical (1− α)-quantile as

q̂α := inf{c : F̂α(c) ≥ 1− α}.

Then, for any δ > 0, with probability at least 1− δ,

|q̂α − qα| ≤ ϵ,

where ϵ is chosen so that
Fα(qα + ϵ)− Fα(qα − ϵ) ≤ 2t,

and t =
√

ln(2/δ)
2m .

Proof Sketch: Follows from the DKW Inequality and monotonicity of Fα.

Claim 2 (Uniform Convergence of Q-values) Consider Q-value estimation errors defined as:

ei := fθ(si, ai)−Qπ(si, ai),

where {ei}mi=1 are i.i.d. and bounded by M > 0. Let S be a finite state space and A =
{−amax, amax}d the discrete bang-bang action space. Then, for any δ > 0, with probability at
least 1− δ:

max
(s,a)∈S×A

|fθ(s, a)−Qπ(s, a)| ≤M

√√√√2 ln
(

|S||A|
δ

)
m

.

Proof: Construct bounded normalized errors and use Hoeffding’s Inequality with a relevant choice
of t. Further detailed proofs for Claims 1 and 2 are provided in Appendix A.

By combining these theoretical results, we obtain a high-probability guarantee that the constructed
conformal intervals will contain the true Q-values for every state-action pair. Moreover, when ac-
tions differ only slightly along one dimension, these intervals help ensure that action switches are
made only when the system is sufficiently confident. This leads to policies that are both more stable
and safer, as they mitigate abrupt and potentially hazardous control changes.

5 EXPERIMENTS

5.1 SETUP

We evaluate Conformal Actor-Critic on the D4RL benchmark suite (Fu et al., 2021), focusing on
continuous control environments, which present distinct challenges in terms of reward structure and
dynamics, offering a broad view of generalization and uncertainty estimation. We compare against
standard offline RL baselines, including SAC (Haarnoja et al., 2018) and CQL (Kumar et al., 2020b)

Our implementation of Conformal Q-Learning uses a single Q-network and introduces uncertainty
via split-conformal calibration with a held-out calibration set (10% of the offline dataset). Additional
implementation details can be found in A.2

5.2 MAIN RESULTS: PERFORMANCE ACROSS BENCHMARKS

For each method, we run 4 random seeds and report the mean score:

We observe a substantial performance gap between the reported results for CQL-T (tuned) from
(Kumar et al., 2020b) and our own untuned reproduction, CQL-UT (untuned). This gap underscores
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Environment Ours SAC CQL-UT CQL-T
hopper-medium 29.11 0.8 25.42 58.0
halfcheetah-medium 7.89 -4.3 12.7 44.4

Table 1: Normalized return comparison between our method, our untuned CQL runs (CQL-UT),
and SAC + CQL (tuned, CQL-T) baselines as reported in Kumar et al. (2020b).

(a) Comparing qα (b) Comparing Q(s, a)

Figure 1: SAC vs Conformal SAC

the sensitivity of offline RL algorithms to hyperparameters, particularly in terms of regularization
strength and actor update dynamics. We could not execute a full grid search due to computational
constraints but implore others to do so in future work (resource permitting).

Conformal Actor-Critic achieves competitive results with both CQL-T and CQL-UT, highlighting
the value of uncertainty-aware updtes for improving stability and generalization in offline policy
learning.

5.3 UNCERTAINTY CALIBRATION AND INTERVAL DYNAMICS

We track conformal interval width over training both vanilla SAC and Conformal SAC. As shown
in Figure 1 (Left) the raw qα values increase significantly over the course of training, reflecting a
growing uncertainty in value estimates as the policy shifts further from the behavior policy. How-
ever, our scaled version maintains a much more stable interval, indicating controlled exploration
over the course of training. Concurrently, we observe the Q-value estimates under both regimes
(see Figure 1 (Right)). In the absence of regularization, Q-values grow rapidly and become unre-
alistically large (exceeding even expert trajectory rewards) — confirming overestimation bias. In
contrast, Conformal Actor-Critic maintains significantly lower Q-values, indicating convservatism
and regularization in accordance with calibrated uncertainty. This confirms Theorem 2

5.4 ROBUSTNESS TO OOD ACTIONS

To confirm that Conformal Actor-Critic accurately assigns elevated uncertainty to inputs that diverge
from the training distribution, we test the model’s behavior on OOD state-action pairs. Specifically,
we generate OOD samples using a k-nearest neighbors rejection strategy that selects only those
states lying beyond a minimum distance threshold from the offline dataset.

We then compute the confirmal uncertainty ratio – defined as the ratio betwween the confirmal inter-
val width qα for an OOD sample and the average interval width over the in–distribtion dataset. This
provides a scale-invariant way to assess whether the model increases its uncertainty in accordance
with distributional shift.

As shown in Figure 3, we observe a consistent positive correlation between uncertainty and distance
to the training distribution. On average, OOD samples lie at a distance of 1.622 from the training
data (measured in feature space), and are assigned 4 % higher conformal uncertainty on average.
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Figure 2: Ratio of conformal interval width qOOD
α /qtrain

α as a function of distance to the training
distribution.

Metric Average Value
Distance from Training Distribution 1.622

Uncertainty Ratio qOOD
α /qtrain

α 1.04

Table 2: Aggregate statistics of OOD samples used to evaluate uncertainty robustness.

We measure the model’s uncertainty when faced with these OOD states and compare it to its un-
certainty with normal states. Our findings show that the model maintains a stable uncertainty level
across these tests. On average, the uncertainty ratio stands at approximately 1.04, with the OOD
samples averaging a distance of 1.622 from the training distribution. This further supports our claim
that conformal uncertainty estimates scale appropriately with distributional shift, even in the absence
of explicit OOD labels, providing a useful signal for detecting epistemic uncertainty in offline RL
deployments.

5.5 STABILITY OF ACTIONS

Possible Experiment: We evaluated Raw SAC, standard CQL, and our Conformal Actor Critic
(CAC) under an offline training regimen of 1 million gradient steps using identical random seeds
when possible. During training, we logged evaluation normalized returns at fixed intervals, along
with the means and standard deviations of Q-value estimates computed on a fixed batch of state-
action pairs. For CAC, we additionally tracked the evolving conformal interval qα. Post-training,
we computed the mean and variance of normalized returns across seeds and analyzed the temporal
stability of Q-value estimates.

5.5.1 ROBUSTNESS TO OUT-OF-DISTRIBUTION (OOD) ACTIONS

Our model demonstrates robustness against OOD actions through its consistent performance in un-
familiar scenarios. We assess this by using a k-nearest neighbors approach to generate and test OOD
samples that maintain a minimum distance from known, in-distribution states. This method helps us
verify that the model is fed data outside of its expected distribution.

We measure the model’s uncertainty when faced with these OOD states and compare it to its un-
certainty with normal states. Our findings show that the model maintains a stable uncertainty level
across these tests. On average, the uncertainty ratio stands at approximately 1.04, with the OOD
samples averaging a distance of 1.622 from the training distribution.

Metric Average Value
Average Distance from Training Distribution 1.622

Average Uncertainty Ratio 1.04x

Table 3: Average aggregate statistics of uncertainty ratios and distances for OOD samples
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Figure 3: Uncertainty Ratios vs. Distance to Training Distribution

6 DISCUSSION

Our work introduces Conformal Actor-Critic, an offline RL framework that integrates conformal
prediction into actor-critic and DQN architectures to address extrapolation error. Through theoreti-
cal analysis and empirical evaluation, we show how conformal prediction intervals stabilize policy
learning, enhance robustness to OOD data, and guide safer decision-making.

We establish finite-sample uncertainty guarantees by constructing theoretical coverage bounds for
Q-value estimates. These intervals adapt dynamically based on empirical quantiles, balancing op-
timism with safety. Our analysis demonstrates that Conformal Actor-Critic is more optimistic yet
remains conservatively bounded compared to Conservative Q-Learning (CQL). We operationalize
this framework through bang-bang control tasks, where narrowing conformal intervals during train-
ing leads to improved policy stability and reduced reactive behavior.

6.1 LIMITATIONS AND FUTURE WORK

While Conformal Actor-Critic shows promising preliminary results, several challenges remain:

• Hyperparameter Sensitivity: As observed in our comparison with untuned CQL (CQL-
UT), offline RL methods can be highly sensitive to regularization schedules and actor-
critic update dynamics. Although conformal intervals help mitigate instability, future work
should explore adaptive penalty scaling or automated quantile tuning to further improve
robustness.

• Scalability to High Dimensions: Our method relies on computing nonconformity scores
and empirical quantiles, which may grow expensive in high-dimensional or continuous-
action domains. While we use standard SAC infrastructure, extending to more complex
domains (e.g., image-based inputs or robotics) may require more efficient calibration meth-
ods.

• Group Structure and Local Calibration: Our GroupSplitConformal algorithm (which
we did not implement due to resource constraints) enables localized uncertainty calibra-
tion, but relies on predefined group structures. Learning groupings automatically (e.g.,
via clustering or representation learning) could yield stronger conditional coverage without
domain-specific knowledge.

Conformal Actor-Critic unifies statistical uncertainty quantification with policy optimization in of-
fline RL. The result is a method that is simple, interpretable, and statistically principled—providing
formal coverage guarantees without the complexity of ensembles or model-based rollouts. Our
results underscore the promise of conformal prediction in reinforcing safety and robustness, partic-
ularly for offline decision-making under uncertainty.

We envision future research extending this approach to dynamic and multi-agent environments,
integrating adaptive exploration schemes, and scaling to more complex tasks like robotics or au-
tonomous systems—paving the way for safe, uncertainty-aware RL deployments.
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A APPENDIX

A.1 PROOFS

A.1.1 THEOREM 1

Similar to Proof 58 in Roth (2024). Sort the data points in Dcal in increasing order of their noncon-
formity scores. Define the index i∗ as the index in the dataset with nonconformity score in position
1− δ, i.e. i∗ = ⌈(1− δ)(m+ 1)⌉. Then, since the data points are exchangeable by assumption, the
rank of the test nonconformity score is uniformly distributed, and so:

Pr(y ∈ C(s, a)) = i∗

m+ 1
≥ (1− δ)(m+ 1)

m+ 1
= 1− δ

The upper bound can be shown by similar analysis:

Pr(y ∈ C(s, a)) = i∗

m+ 1
≤ (1− δ)(m+ 1) + 1

m+ 1
= 1− δ + 1

m+ 1

A.1.2 THEOREM 3

Since L(s, a) = fθ(s, a) − qα is a lower confidence bound for Qπ(s, a), with probability at least
1 − α, it holds that L(s, a) ≤ Qπ(s, a) for all (s, a). Therefore, when πL selects actions based
on L(s, a), it ensures that the expected value V πL(s) does not fall below V πβ (s) by more than
ϵ(m,α), where ϵ(m,α) accounts for the finite-sample uncertainty and diminishes as the size of the
calibration dataset m increases.

A.1.3 CLAIM 1: QUANTILE CONSISTENCY

By the DKW inequality, for any δ > 0, setting t =
√

ln(2/δ)
2m gives:

Pr

(
sup
c
|Fα(c)− F̂α(c)| ≤ t

)
≥ 1− δ.

In particular, at c = q̂α (where F̂α(q̂α) = 1− α):

|Fα(q̂α)− (1− α)| ≤ t.
Since Fα(qα) = 1− α, we have:

|Fα(q̂α)− Fα(qα)| ≤ t.

Because Fα is monotone, there exists ϵ > 0 such that |q̂α− qα| ≤ ϵ implies |Fα(q̂α)−Fα(qα)| ≤ t.
Thus, with probability at least 1− δ:

|q̂α − qα| ≤ ϵ.

A.1.4 CLAIM 2: UNIFORM CONVERGENCE

Because each error is bounded by M , define normalized errors:

Xi :=
ei
M
.

This ensures that |Xi| ≤ 1 for all i.

For a fixed state-action pair (s, a), the expected normalized error is E[Xi]. By Hoeffding’s inequal-
ity, for any t > 0:

Pr

(∣∣∣∣ 1m
m∑
i=1

Xi − E[Xi]

∣∣∣∣ ≥ t
)
≤ 2e−2mt2 .

We want a uniform bound over all |S||A| state-action pairs. Applying a union bound, we require
that:

Pr

(
max
(s,a)

∣∣∣∣ 1m
m∑
i=1

Xi − E[Xi]

∣∣∣∣ < t

)
≥ 1− δ,
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Table 4: Hyperparameters for Conformal SAC on D4RL Tasks

Hyperparameter Value
Discount factor γ 0.99
Q-network learning rate 3× 10−4

Policy learning rate 3× 10−5

Replay buffer capacity 1,000,000
Batch size 256
Training iterations 100,000
Gradient steps per update 1
Soft target update coefficient τ 0.005
Hidden layers 2
Hidden units per layer 256
Activation function ReLU
Sample frequency 256
Log interval 2000
Conformal calibration ratio 0.1
Conformal update frequency 50 steps
Conformal penalty scale αq 10
Min log std for policy −10
Max log std for policy 2

which will hold if:
2|S||A|e−2mt2 ≤ δ.

Solving for t:

e−2mt2 ≤ δ

2|S||A|
=⇒ −2mt2 ≤ ln

(
δ

2|S||A|

)
.

Therefore:

t ≥

√√√√ ln
(

2|S||A|
δ

)
2m

.

Since |Xi| ≤ 1, we have
∣∣ 1
m

∑
iXi − E[Xi]

∣∣ representing the average deviation of the normalized
error. Returning to the original scale (i.e. multiplying by M):

max
(s,a)
|fθ(s, a)−Qπ(s, a)| =M max

(s,a)

∣∣∣∣ 1m
m∑
i=1

Xi − E[Xi]

∣∣∣∣.
Thus, with probability at least 1− δ:

max
(s,a)
|fθ(s, a)−Qπ(s, a)| ≤M

√√√√2 ln
(

|S||A|
δ

)
m

.

which gives our desired claim.

A.2 IMPLEMENTATION DETAILS

Our approach integrates an offline conformal prediction framework within the traditional Actor-
Critic algorithm:

• Data Collection: Data is collected randomly from the environment to ensure a diverse set
of training and calibration data.

• Q-Network Training: A neural network (termed as Q-Network) predicts Q-values using a
dataset of states and actions from the CartPole-v1 environment, based on observed rewards
and subsequent states.
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• Conformal Prediction Integration: During training, a conformal threshold is dynamically
calculatedand applied to the updates of Q-values to maintain reliable prediction intervals,
stabilizing the policy and ensuring robust decision-making.
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